
Assessing the Impact of Network Compression in Deep CNNs

Andrew Akers
Georgia Institute of Technology

aakers@gatech.edu

Clayton Smith
Georgia Institute of Technology

csmith658@gatech.edu

Ryan Mcbee
Georgia Institute of Technology

rmcbee6@gatech.edu

Joseph Waugh
Georgia Institute of Technology

jwaugh6@gatech.edu

Abstract

Advances in using deep learning for computer vision
tasks have been primarily driven by more complex neural
network architectures. While this has resulted in material
performance gains, it has also led to over-parameterized
models that require significant computational resources.
Deploying these complex models in resource constrained
environments, such as mobile applications, has been chal-
lenging. In this research, we explore two techniques for
model compression: pruning and quantization, which seek
to balance model performance and computational costs.
Our experiments prove that both techniques in isolation and
a combination of the two are effective ways to significantly
reduce model size and complexity without a corresponding
degradation in performance on the CIFAR-10 dataset.

1. Introduction/Background/Motivation
Convolutional neural networks (CNN), have enabled

tasks that were previously difficult to accomplish without
deep learning based approaches. CNNs are particularly use-
ful to robotic systems which rely heavily on visual based
sensors to navigate and interact with the world. Adding
more advanced visual sensing to robotic systems can pro-
vide greater levels of autonomy, and potentially allow for
the removal of auxiliary and expensive sensors, such as li-
dar [11]. Unfortunately, CNN algorithms tend to be charac-
terized by a large number of multiplications and additions
to accomplish the matrix multiplication that comprises the
algorithm. This limits CNNs to relatively expensive and
large processors which restricts the size, weight, and power
(SWaP) of robotic systems.

One current solution to reduce computation complexity
is to use more efficient CNN architectures such as the mo-
bilenet, which introduced a decoupled type of convolutional
layer known as a depth-wise separable convolution[8]. This

new design was able to achieve similar accuracy to a full
convolution network while having 9 times less parameters,
which greatly reduced the total memory and computation
used. Another method to reduce computational complex-
ity is to convert the floating point precision that SWaP con-
strained processors do not have efficient support for to 8-bit
integers which these processors have more efficient support
for implementing. Converting the floating point values to 8-
bit integers is typically done after the floating point version
of the CNN is trained, and typically results in minimal de-
crease in the overall accuracy, more efficient computation,
and a 4x decrease in memory.

While the optimizations previously mentioned have en-
abled CNNs to run on more platforms, there are still a host
of computing platforms that still cannot handle the com-
putation/memory demands of CNNs. In this research, we
explored two relatively new techniques, parameter pruning
and sub 8-bit quantization that are less commonly used but
have the potential to greatly increase CNN efficiency. Our
research focused on better understanding these two tech-
niques and how they can both be used to further increase
the efficiency of CNN algorithms without a substantial de-
crease in performance. We hope this research will help in-
form future trade-off considerations between efficiency and
accuracy for computer vision algorithms targeted towards
low SWaP based systems. The techniques explored in this
research are dataset agnostic, so we used the Pytorch de-
fault CIFAR-10 and CIFAR-100 datasets to evaluate our re-
search. We chose these datasets because they have a large
number of labeled images, are well explored in literature,
and are only 32x32 pixels, which allows for quick and easy
evaluation of the different models and optimization tech-
niques we explored. A brief analysis of model performance
with regards to the number of predictor classes is analyzed
with regards to the ResNet and MobileNet architectures
used for this report.

1



2. Approach

2.1. Pruning

Parameter pruning is the process of removing weights
which contribute the least to the final accuracy. This type
of approach is typically done by removing the smallest
weights, which can be thought of as representing those that
have the least impact on the model output [5]. Pruning cre-
ates a more efficient system by reducing the total memory
used for the weights as well as reducing the total number of
computations since any weight that is converted to 0 can be
ignored.

Pruning strategies for deep CNNs can be separated into
two broad categories: unstructured and structured. Un-
structured methods remove individual parameters from the
2d convolutional filters across the entire network, creating
sparsity. The main drawback of this method is that it re-
quires a deep learning implementation with a sparse linear
algebra library to realize its compression benefits. Struc-
tured pruning, on the other hand, removes entire channels of
filters and output feature maps, which does not require any
changes to deep learning implementations, such as Pytorch.
Given that one of our main goals is to analyze network com-
pression metrics, such as storage size and inference time,
we chose to implement structured pruning.

An important consideration in structured pruning is de-
termining which set of filters to remove. In an ideal situ-
ation, we would remove the largest set of filters that had
a minimal impact on performance. However, there is no
optimal way to efficiently solve this problem due to the ex-
tremely large possible combinations of filters within a deep
network. Further, a greedy approach of pruning one filter at
a time with the smallest impact on performance is also not
optimal because its impact will likely change as additional
filters are pruned in following iterations. Li et al. (2017)
[6] created a simple yet effective strategy that selects the
smallest filters to prune based on the ℓ1-norm. The basic
idea is that due to the multiplication operations in convolu-
tions, small filters will produce small activations, which will
be carried forward through the network and in turn have a
small impact on the output. We utilized this method as the
foundation of our pruning strategy. In addition, our imple-
mentation used some of the code from a python package
[10] that the authors published in conjunction with the pa-
per.

Through experimentation, we found that a naı̈ve prun-
ing strategy in which a fixed percentage of filters were re-
moved from all convolutional layers resulted in significant
performance degradation. This led to the discovery that the
concept of layer sensitivity is key to effective pruning. We
define layer sensitivity as the loss in validation accuracy af-
ter a percentage of the layer’s filters are pruned in isolation.
Layer sensitivity for both ResNet18 and MobileNetV2 are

Figure 1. Convolutional Layer Sensitivity - ResNet18

Figure 2. Convolutional Layer Sensitivity - MobileNetV2

displayed in Figures 1 and 2.
Specific convolutional layers in each model are very sen-

sitive to pruning and are essential to performance. We see
that this often occurs in earlier layers, whereas layers toward
the end of the network are insensitive to pruning. This phe-
nomenon is likely related to the idea of receptive field – later
layers have a larger receptive field, and are therefore more
likely to have redundant feature activations that can safely
be removed. Our overall pruning strategy relies on the real-
ization that some layers can be pruned aggressively, while
others should be left untouched. It can be implemented with
the following steps:

1. Calculate isolated layer sensitivities for each convolu-
tional layer over a range of pruning percentages (e.g.,
0.1, 0.2, etc.).

2. Set the amount of pruning, pi, for convolutional layer
i at the highest percentage in which the layer sensitiv-
ity is greater than some small negative constant (e.g.,
−1e− 3).

3. Remove pi ∗ ni of the filters at layer i for all convolu-
tional layers. Retrain the network until the validation
performance stops improving.

2.2. Quantization

As mentioned earlier, quantization is the process of con-
verting the original floating point weights and activations
into a fixed point integer representation for greater effi-
ciency. There are two main types of quantization: post
training quantization (PTQ) and quantization aware train-
ing (QAT) [7]. The first type, PTQ, takes the original float-
ing point values and directly converts them to 8-bit integers
without any further training. A small calibration step using
unlabeled data is used to readjust the batchnorm statistics.
This technique has been shown to work very well for 8-bit
quantization, but it performs significantly worse on lower
bit precision [4].

The other method, QAT, allows for retraining after the
quantization occurs. To make the training work with the
quantized values, a new technique called straight through
estimator (STE) is used. This technique works by using the
quantized weights in the forward pass of the CNN, but dur-
ing backpropagation [3][12], the floating point weights are

2



updated. This allows the fine updated steps of the backprop-
agation to work for even the integer quantized values. This
process can be improved further by making the quantization
levels a learnable parameter allowing for the back propaga-
tion to iteratively learn the best quantization level instead of
naively setting the quantization level upfront using statistics
about the weights. These two ways of implementing quan-
tization have their pros and cons. For PTQ, it is relatively
easy to implement, does not require additional training, and
does not need any labeled data. The cons of this technique
are that it results in much lower accuracy than QAT, espe-
cially for lower precision quantizations. For QAT, the pros
are that it results in much higher accuracy than PTQ since
the weights and activations can adjust after the quantization
step. The cons are that this extra quantization step results in
significantly more training time and complexity.

Of these two techniques, we went with the QAT train-
ing since we were targeting quantization levels of 5 bits or
lower. Using such a low quantization level has two ma-
jor benefits to improving the overall efficiency of a CNN.
First, it allows for the use of more simplified mathemat-
ics. On devices that can support custom arithmetic, such as
Field Programmable Gate Arrays (FPGA), lower bit preci-
sion can help achieve a nearly 2x increase in efficiency of
the final computation and less overall resources [1]. Ad-
ditionally, quantizing the weights and activations uses less
overall memory, which will greatly increase the efficiency.
By converting the weights and activations from 8-bits to 4-
bits, an overall memory saving of 2x is achieved.

For our specific implementation, we leveraged the code
from the PROFIT quantization paper [9]. The quantization
process used in this paper is as follows.

1. Train a full precision CNN as normal.

2. Progressively quantize the activation bit precision
starting at 8-bit quantization for all activations down
to the final bit precision.

3. Progressively quantize the weights starting at 8-bits for
all weights and going down to the final bit precision.

For both the weight/activation quantization level, two
steps are done. First only the batchnorm and learnable
quantization levels are trained, leaving the weights un-
changed during the initial step. This gives the network time
to reach more stable statistics before training the weights.
Next the batchnorm, learnable quantization, and weights
are all trained. Since the network has already been trained
in full precision, the number of epochs can be significantly
less than what were used in the original training. For our
research, we used five epochs for the statistics stabiliza-
tion step, and 15 epochs for the weight training step. For
the learning rate scheduler, we found that cosine annealing
gave the best results, most likely since it will start off at max

Figure 3. Pruning Model Results

value, and decrease quickly for the relatively short number
of epochs used in this step.

3. Experiments and Results
3.1. Pruning

In addition to accuracy degradation, we measured prun-
ing success based on a number of different metrics that
helped quantify the pruned model’s size and speed. These
metrics included the total number of convolutional filters,
individual parameters, and floating point operations in the
forward pass, the inference time for evaluating a batch, and
storage size. From a practical perspective of deploying
the model in a resource constrained environment, inference
time and storage size are the most important metrics.

Our pruning strategy was quite successful as we were
able to remove a significant portion of both MobileNet
and ResNet without material performance degradation. In
many of the convolutional layers that were insensitive to
pruning, we were able to remove up to 60% of the filters,
suggesting that the model architectures create highly over-
parameterized models. The most impactful result was the
reduction in storage size. Even though MobileNet was al-
ready designed to have a light footprint, we were able to
reduce its size from 9.0MB to just 0.7 MB, a 92% reduc-
tion. Meanwhile, the validation accuracy fell just 0.5%,
from 92.7% to 92.2%. The full results for the original and
pruned models are shown in Figure 3.

3.2. Quantization

Because sub 8-bit quantization requires special hardware
to get inference time speed ups, we only looked at total
memory usage of each of the different quantizations. In ta-
ble Figure 4, we show the validation accuracy for full model
activation quantizations with full precision weights for both
Mobilenet-V2 and Resnet18. In table Figure 5, we have
the validation accuracy for both models where the activa-
tions were fixed at 3-bits and the weights were progressively
quantized.

There are some interesting takeaways from these results.
First, it makes sense that from the floating point model
to the 8-bit model the validation accuracy decreases just
slightly. But what is surprising is that as the quantizations
progress, the accuracy increases. There are two possible
explanations for this occurrence. The first and most likely

3



Figure 4. Validation accuracy for activation quantization only

Figure 5. Validation accuracy for weight quantization using 3-bit
activations

answer is that the hyper parameters for how long to train
each quantization level were too short and resulted in each
quantization level not regaining the full accuracy. The sec-
ond explanation is that the lower bit precision resulted in a
greater regularization of the network that allowed the it to
generalize better. While outside the scope of this research,
tuning the hyper parameters could result in improved per-
formance for the different quantization levels.

One other interesting feature is the difference between
which method uses more activation memory and which
uses more weight memory. Many of the previous papers
focused on quantization only examined the reduction in
weight memory. While this is helpful in making the overall
CNN more efficient by not having to move weights around
as much, one factor that is heavily overlooked is how much
memory is used to store the intermediate memory. As we
can see between the two models, these two factors can vary
wildly between models that achieve similar accuracy. For
ResNet18, it uses significantly less activation memory than
MobileNetV2. On the other hand, ResNet18 uses signif-
icantly more memory to store the weights than does Mo-
bileNetV2, with almost a 5x difference in weight memory
between ResNet18 and MobilNetV2. These differences in
where memory is used should be factored into the decision
of which model to use based on which custom computing
platform you are using.

3.3. Combination of Pruning and Quantization
Methods

In order to further optimize model accuracy versus com-
putational footprint, we combined both model compres-

sion methods detailed above using three separate strategies:
pruning then quantizing, quantizing then pruning, and an in-
terleaved method. The interleaved method breaks the quan-
tization operations into steps and progressively quantizes
and prunes at the same time, choosing the best operation
(in terms of accuracy) at each step. We target 3-bit quan-
tization in four steps (8,5,4,3) and scale back the pruning
amount by a factor of four. We use these methods on both
ResNet18 and MobileNetV2 to determine if model struc-
ture impacts performance in terms of compression and ac-
curacy. The model compression metrics used here are the
in-memory footprint (calculated by multiplying the number
of model parameters with their size), and the size of the
model on disk.

In terms of accuracy, the interleaved methods perform
the best even compared to the base models (92.85% ac-
curacy and 93.19% accuracy for the ResNet18 and Mo-
bileNetV2 models, respectively) while the basic pruning
and quantization combinations fall slightly short in terms
of accuracy relative to the standalone pruning and quantiza-
tion methods. The pruning then quantizing method appears
to have the higher accuracy of the two methods. This is
likely due to the fact that the pruning selection algorithm
struggles to determine what to prune at low resolution since
the network is already densely encoded.

Despite slightly lower accuracy scores, the combination
methods eliminate the tradeoff between quantization and
pruning. Both quantized models have substantially lower
memory usage (ResNet18 with a 99.3% reduction, Mo-
bileNetV2 with a 99.3% reduction) as well as a substan-
tially lower storage size (ResNet18 with a 93.2% reduc-
tion, MobileNetV2 with a 92.3% reduction). The order-
ing had a negligible effect on compression, with only the
quantized-then-pruned resnet showing slightly increased
storage space. This suggests that the accuracy optimal or-
dering should generally be selected, which for both models
appears to be pruning and then quantizing.

While the interleaved models don’t offer as substantial a
reduction in memory and storage, it is very interesting to see
that they perform better than the base models. This suggests
that the interleaving compression process could potentially
be used to allow models to generalize better while at the
same time generating a more compact network.

3.4. Model Accuracy: CIFAR-10 and CIFAR-100

In order to validate the results for quantization and
pruning methods described above, a comparison between
the obtained results for the pruned ResNet18 and Mo-
bileNetV2 neural network architectures were tested against
two datasets: the CIFAR-10 (the original dataset used
above) and CIFAR-100 datasets. This will showcase the
effect of increasing the number classes has on these archi-
tectures compared to the original results above. The initial

4



Figure 6. Pruning Quantization Impact on Memory

results were obtained below:

Figure 7. CIFAR-10 vs CIFAR-100 accuracy

In looking at the results above, there’s a clear decrease
in validation accuracy when using the CIFAR-100 dataset
instead of CIFAR-10. The relative decrease in validation
accuracy is within 19-20% for both model architectures,
thus showing that the impact is very similar. These model
architectures generate an output by selecting the argmax of
a class prediction for each class in the dataset.

As a result, we shift from selecting the argmax of 10 pre-
dictions, to now the argmax of 100 predictions in choosing
the class prediction. By shifting this number of classes up-
wards, the confidence in distinct classes is decreased as the
distinction between these classes is reduced with a larger
number of potential predictions. Prior research has sup-
ported this theory [2], and the strong decrease in these

validation accuracy scores can potentially be linked to the
different classes featuring strongly significant features that
cause the model to struggle when generating these confi-
dence scores for each class. Pairing this with an increase
in the number of classes means that the margin of error in
predicting the correct class among several classes that may
be similar in terms of the loss function outputs results in
misclassifications.

5



References
[1] Convolutional neural network with int4 optimization on xil-

inx devices white paper. 2014. 3
[2] Felix Abramovich and Marianna Pensky. Classification with

many classes: challenges and pluses, 2015. 5
[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Es-

timating or propagating gradients through stochastic neurons
for conditional computation, 2013. 2

[4] Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper, 2018.
2

[5] Yann LeCun, John Denker, and Sara Solla. Optimal brain
damage. In D. Touretzky, editor, Advances in Neural Infor-
mation Processing Systems, volume 2. Morgan-Kaufmann,
1989. 2

[6] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets, 2016.
2

[7] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yely-
sei Bondarenko, Mart van Baalen, and Tijmen Blankevoort.
A white paper on neural network quantization, 2021. 2

[8] Eunhyeok Park and Sungjoo Yoo. Profit: A novel training
method for sub-4-bit mobilenet models. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, edi-
tors, Computer Vision – ECCV 2020, pages 430–446, Cham,
2020. Springer International Publishing. 1

[9] Eunhyeok Park and Sungjoo Yoo. Profit: A novel training
method for sub-4-bit mobilenet models, 2020. 3

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates,
Inc., 2019. 2

[11] Zhiqing Wei, Fengkai Zhang, Shuo Chang, Yangyang Liu,
Huici Wu, and Zhiyong Feng. Mmwave radar and vision
fusion for object detection in autonomous driving: A review,
2021. 1

[12] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher,
Yingyong Qi, and Jack Xin. Understanding straight-through
estimator in training activation quantized neural nets, 2019.
2

6



Student Name Contributed Aspects Details
Ryan McBee Quantization Implementa-

tion and Coding; Introduc-
tion/Background/Motivation
Section

Ryan McBee worked on implement-
ing the low-precision quantization used
in this research and implemented the
training code for the quantization train-
ing. He also wrote the introduc-
tion/background/motivation section.

Andrew Akers Model Pruning Implemen-
tation and Coding; Model
Training Code

Andrew Akers implemented the model
pruning and layer-by-layer pruning strat-
egy based on layer sensitivity. He also
wrote the basic Pytorch model training
code.

Clayton Smith Pruning and Quantization
Methodology and Coding

Clayton Smith worked on combining the
pruning and quantization methods and im-
plementing the interleaved compression
method.

Joseph Waugh CIFAR-10 vs CIFAR-100
research and analysis; Re-
port Formatting; Meeting
Coordination

Joseph Waugh worked on comparing the
non-pruning and quantized base model re-
sults and quantized model results on both
the original CIFAR-10 dataset and CIFAR-
100 dataset to see if an increase in the num-
ber of classifications has an impact on val-
idation accuracy. He also compiled the
draft of the report into LaTeX format us-
ing the provided template.

Table 1. Contributions of team members.

7


